Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите, что биссектрисы треугольника пересекаются в одной точке.

Вниз   Решение


Известно, что при любом целом  K ≠ 27  число  a – K³  делится на  27 – K. Найти a.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.

ВверхВниз   Решение


На высоте AH треугольника ABC взята точка M. Докажите, что  AB² – AC² = MB² – MC².

ВверхВниз   Решение


На сторонах  AB, BC, CA правильного треугольника ABC взяты точки P, Q, R так, что  AP : PB = BQ : QC = CR : RA = 2 : 1.
Докажите, что стороны треугольника PQR перпендикулярны сторонам треугольника ABC.

ВверхВниз   Решение


Известно, что при любом целом  K ≠ 27  число  a – K1964  делится без остатка на  27 – K. Найти a.

ВверхВниз   Решение


Найдите наименьшее натуральное число n, для которого выполнено следующее условие: если число p – простое и n делится на  p – 1,  то n делится на p.

ВверхВниз   Решение


На диске хранится 2013 файлов размером 1 Мб, 2 Мб, 3 Мб, ..., 2012 Мб, 2013 Мб. Можно ли их распределить по трём папкам так, чтобы в каждой папке было одинаковое количество файлов и все три папки имели один и тот же размер (в Мб)?

ВверхВниз   Решение


Докажите, что треугольник ABC равнобедренный, если у него:
  а) медиана BD является высотой;
  б) высота BD является биссектрисой.

ВверхВниз   Решение


С помощью циркуля и линейки постройте трапецию по основаниям и диагоналям.

ВверхВниз   Решение


Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость.

ВверхВниз   Решение


Фигура на плоскости имеет ровно две оси симметрии. Найдите угол между этими осями.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 563]      



Задача 35633

Темы:   [ Свойства симметрий и осей симметрии ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Сколько осей симметрии может быть у треугольника?

Прислать комментарий     Решение

Задача 35121

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 2+
Классы: 9,10

Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые?
Прислать комментарий     Решение


Задача 102792

Темы:   [ Осевая и скользящая симметрии ]
[ ГМТ - прямая или отрезок ]
Сложность: 2+
Классы: 7,8,9

Найти множество точек. Даны две точки А и В. Найти множество точек, каждая из которых является симметричным образом точки А относительно некоторой прямой, проходящей через точку В.
Прислать комментарий     Решение


Задача 32026

Темы:   [ Симметрия помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Точка M внутри выпуклого четырехугольника ABCD такова, что площади треугольников ABM, BCM, CDM и DAM равны. Верно ли, что ABCD — параллелограмм, а точка M — точка пересечения его диагоналей?

Прислать комментарий     Решение

Задача 35545

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 3-
Классы: 8,9

Фигура на плоскости имеет ровно две оси симметрии. Найдите угол между этими осями.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .