Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Пусть P(x) – многочлен степени  n ≥ 2  с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа    также являются длинами сторон некоторого остроугольного треугольника.

Вниз   Решение


На прямой даны четыре точки A, B, C, D в указанном порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под равными углами.

ВверхВниз   Решение


В равнобедренном треугольнике ABC известны, что AC = 4, AB = BC = 6. Биссектриса угла C пересекает сторону AB в точке D. Через точку D проведена окружность, касающаяся стороны AC в её середине и пересекающая отрезок AD в точке E. Найдите площадь треугольника DEC.

ВверхВниз   Решение


Последовательность чисел {an} задана условиями

a1 = 1,        an + 1 = an + $\displaystyle {\dfrac{1}{a_n^2}}$    (n $\displaystyle \geqslant$ 1).

Верно ли, что эта последовательность ограничена?

ВверхВниз   Решение


На медиане BM и на биссектрисе BK треугольника ABC (или на их продолжениях) взяты точки D и E так, что DK || AB и EM || BC. Докажите, что ED$ \bot$BK.

ВверхВниз   Решение


Центр окружности, касающейся стороны BC треугольника ABC в точке B и проходящей через точку A, лежит на отрезке AC. Найдите площадь треугольника ABC, если известно, что BC = 6 и AC = 9.

ВверхВниз   Решение


Расстояние от точки M до центра O окружности равно диаметру этой окружности. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.

ВверхВниз   Решение


Сходимость итерационного процесса. Предположим, что функция f (x) отображает отрезок [a;b] в себя, и на этом отрезке | f'(x)| $ \leqslant$ q < 1. Докажите, что уравнение f (x) = x имеет на отрезке [a;b] единственный корень x*. Докажите, что при решении этого уравнения методом итераций будут выполняться неравенства:

| xn + 1 - xn| $\displaystyle \leqslant$ | x1 - x0| . qn,    | x* - xn| $\displaystyle \leqslant$ | x1 - x0| . $\displaystyle {\frac{q^n}{1-q}}$.


ВверхВниз   Решение


Сколькими способами можно прочитать слово "строка", двигаясь вправо или вниз?:
С Т Р О К А
Т Р О К А
Р О К А
О К А
К А
А

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 107]      



Задача 73773

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Бином Ньютона ]
[ Индукция (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 5
Классы: 9,10,11

Автор: Шлейфер Р.

Для любого натурального числа n сумма     делится на 2n–1. Докажите это.

Прислать комментарий     Решение

Задача 35547

Темы:   [ Правило произведения ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно прочитать слово "строка", двигаясь вправо или вниз?:
С Т Р О К А
Т Р О К А
Р О К А
О К А
К А
А

Прислать комментарий     Решение

Задача 60871

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 8,9,10

При каких натуральных n число  ( + 1)n – ( – 1)n  будет целым?

Прислать комментарий     Решение

Задача 64359

Темы:   [ Многочлен нечетной степени имеет действительный корень ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 10,11

Даны многочлены P(x) и Q(x) десятой степени, старшие коэффициенты которых равны 1. Известно, что уравнение  P(x) = Q(x)  не имеет действительных корней. Докажите, что уравнение P(x + 1) = Q(x – 1) имеет хотя бы один действительный корень.

Прислать комментарий     Решение

Задача 73613

Темы:   [ Целочисленные и целозначные многочлены ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 8,9,10

Каждое неотрицательное целое число представимо, причём единственным образом, в виде     где x и y – целые неотрицательные числа. Докажите это.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .