ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

Вниз   Решение


Найти все действительные решения уравнения с 4 неизвестными:   x2 + y2 + z2 + t2 = x(y + z + t).

ВверхВниз   Решение


Высота четырехугольной пирамиды SABCD проходит через точку пересечения диагоналей ее основания ABCD . Из вершин основания опущены перпендикуляры AA1 , BB1 , CC1 , DD1 на прямые SC , SD , SA и SB соответственно. Оказалось, что точки S , A1 , B1 , C1 , D1 различны и лежат на одной сфере. Докажите, что прямые AA1 , BB1 , CC1 , DD1 проходят через одну точку.

ВверхВниз   Решение


В основании пирамиды SABC лежит равнобедренная трапеция ABCD , в которой AD=1 , BC= , угол BAD равен arctg 6 . Высота пирамиды проходит через точку O пересечения диагоналей трапеции. Точка E лежит на отрезке SO , причём SE:SO=1:4 . Цилиндр, ось которого параллельна апофеме SM грани SAD ( SM= ), расположен так, что точка E является центром его верхнего основания, а точка O лежит на окружности нижнего основания. Найдите площадь части верхнего основания цилиндра, лежащей внутри пирамиды.

ВверхВниз   Решение


Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 35614

Темы:   [ Уравнение плоскости ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 2+
Классы: 10,11

Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).
Прислать комментарий     Решение


Задача 87166

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 2
Классы: 8,9

Составьте уравнение плоскости, проходящей через точку M(-2;0;3) параллельно плоскости 2x - y - 3z + 5 = 0 .
Прислать комментарий     Решение


Задача 87167

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Составьте уравнение плоскости, проходящей через середину отрезка с концами в точках P(-1;2;5) и Q(3;-4;1) перпендикулярно прямой, проходящей через точки A(0;-2;-1) и B(3;2;-1) .
Прислать комментарий     Решение


Задача 87168

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Составьте уравнение плоскости, проходящей через точки A(-3;0;1), B(2;1;-1) и C(-2;2;0) .
Прислать комментарий     Решение


Задача 87173

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
[ Скалярное произведение ]
Сложность: 3
Классы: 8,9

Найдите острый угол между плоскостями 2x - y - 3z + 5 = 0 и x + y - 2 = 0 .
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .