ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сумма двух натуральных чисел равна 201. Докажите, что произведение этих чисел не может делиться на 201.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 258]      



Задача 35637

Темы:   [ Делимость чисел. Общие свойства ]
[ Классические неравенства (прочее) ]
Сложность: 3-
Классы: 8,9

Сумма двух натуральных чисел равна 201. Докажите, что произведение этих чисел не может делиться на 201.

Прислать комментарий     Решение

Задача 88291

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Неравенство Коши ]
Сложность: 3-
Классы: 7,8

Периметр прямоугольника равен 40. Какой из таких прямоугольников имеет наибольшую площадь?

Прислать комментарий     Решение

Задача 30914

Темы:   [ Иррациональные неравенства ]
[ Неравенство Коши ]
Сложность: 3
Классы: 6,7

n – натуральное число. Докажите, что  

Прислать комментарий     Решение

Задача 34912

Темы:   [ Неравенство Коши ]
[ Классические неравенства (прочее) ]
Сложность: 3

Докажите, что для положительных чисел x1, x2, ..., xn, не превосходящих 1, выполнено неравенство
   

Прислать комментарий     Решение

Задача 61363

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:   (ab + bc + ac)² ≥ 3abc(a + b + c).

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .