ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Укажите такое шестизначное число N, состоящее из различных цифр, что числа 2N, 3N, 4N, 5N, 6N отличаются от него перестановкой цифр.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1027]      



Задача 66522

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8

Миша сложил из кубиков куб 3×3×3. Затем некоторые соседние по грани кубики он склеил друг с другом. Получилась цельная конструкция из 16 кубиков, остальные кубики Миша убрал. Обмакнув конструкцию в чернила, он поочерёдно приложил её к бумаге тремя гранями. Вышло слово КОТ (см. рис.). Что получится, если отпечатать грань, противоположную букве "О"?

Прислать комментарий     Решение


Задача 66671

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четырехугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

Автор: Шноль Д.Э.

В четырехугольниках $ABCD$ и $A_1B_1C_1D_1$ равны соответствующие углы. Кроме того, $AB=A_1B_1$, $AC=A_1C_1$, $BD=B_1D_1$. Обязательно ли четырехугольники $ABCD$ и $A_1B_1C_1D_1$ равны?
Прислать комментарий     Решение


Задача 115363

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметические действия. Числовые тождества ]
Сложность: 4-
Классы: 8,9,10

Существуют ли три попарно различных ненулевых целых числа, сумма которых равна нулю, а сумма тринадцатых степеней которых является квадратом некоторого натурального числа?
Прислать комментарий     Решение


Задача 35770

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Периодические и непериодические дроби ]
Сложность: 4-
Классы: 10,11

Укажите такое шестизначное число N, состоящее из различных цифр, что числа 2N, 3N, 4N, 5N, 6N отличаются от него перестановкой цифр.

Прислать комментарий     Решение

Задача 55179

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

Существует ли треугольник, все высоты которого меньше 1, а площадь больше или равна 10?

Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .