ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Две противоположные вершины единичного куба совпадают с центрами оснований цилиндра, а остальные вершины расположены на боковой поверхности цилиндра. Найдите высоту и радиус основания цилиндра.

Вниз   Решение


Автор: Сонкин М.

На сторонах BC и CD параллелограмма ABCD взяты точки M и N соответственно. Диагональ BD пересекает стороны AM и AN треугольника AMN соответственно в точках E и F , разбивая его на две части. Докажите, что эти две части имеют одинаковые площади тогда и только тогда, когда точка K , определяемая условиями EK || AD , FK || AB , лежит на отрезке MN .

ВверхВниз   Решение


Докажите равенства:
  а)  φ(m) φ(n) = φ((m, n)) φ([m, n]);
  б)  φ(mn) φ((m, n)) = φ(m) φ(n) (m, n).
Определение функции φ(n) см. в задаче 60758.

ВверхВниз   Решение


Ася и Вася вырезают прямоугольники из клетчатой бумаги. Вася ленивый; он кидает игральную кость один раз и вырезает квадрат, сторона которого равна выпавшему числу очков. Ася кидает кость дважды и вырезает прямоугольник с длиной и шириной, равными выпавшим числам. У кого математическое ожидание площади прямоугольника больше?

ВверхВниз   Решение


Разменный автомат меняет одну монету на пять других. Можно ли с его помощью разменять металлический рубль на 26 монет?

ВверхВниз   Решение


Купец продаёт двух коней с сёдлами, причём цена одного седла 120 рублей, а другого – 25 рублей. Первый конь с хорошим седлом втрое дороже другого с дешёвым, а другой конь с хорошим седлом вдвое дешевле первого коня с дешёвым. Какова цена каждого коня?

ВверхВниз   Решение


Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).

Вверх   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 15]      



Задача 66493

Тема:   [ Треугольники (прочее) ]
Сложность: 5
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ проведены высоты $AA_1$ и $CC_1$. Окружность, описанная вокруг треугольника $A_1BC_1$, проходит через точку $M$ пересечения медиан. Найдите все возможные значения величины угла $B$.
Прислать комментарий     Решение


Задача 66480

Темы:   [ Вписанные и описанные окружности ]
[ Треугольники (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Точка $O$ — центр описанной окружности треугольника $ABC$, $AH$ — его высота. Точка $P$ — основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину отрезка $AB$.
Прислать комментарий     Решение


Задача 66536

Темы:   [ Вписанные и описанные окружности ]
[ Треугольники (прочее) ]
[ Планиметрия (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

В остроугольном треугольнике ABC проведены высоты AA' и BB'. Точка O – центр окружности, описанной около треугольника ABC. Докажите, что расстояние от точки A' до прямой B' равно расстоянию от точки B' до прямой A'.
Прислать комментарий     Решение


Задача 66890

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Треугольники (прочее) ]
Сложность: 3
Классы: 8,9,10

В треугольнике $ABC$ провели высоты $AX$ и $BZ$, а также биссектрисы $AY$ и $BT$. Известно, что углы $XAY$ и $ZBT$ равны. Обязательно ли треугольник $ABC$ равнобедренный?
Прислать комментарий     Решение


Задача 37549

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Треугольники (прочее) ]
Сложность: 3
Классы: 6,7,8

Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .