Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На сторонах треугольника ABC вне его построены правильные треугольники ABC1, BCA1 и CAB1. Доказать, что $ \overrightarrow{AA_1}$ + $ \overrightarrow{BB_1}$ + $ \overrightarrow{CC_1}$ = $ \overrightarrow{0}$.

Вниз   Решение


В треугольнике ABC даны три стороны:  AB = 26,  BC = 30  и  AC = 28.  Найдите часть площади этого треугольника, заключённую между высотой и биссектрисой, проведёнными из вершины B.

ВверхВниз   Решение


Выведите формулу для суммы 13 + 23 + 33 +...+ n3.

ВверхВниз   Решение


У N друзей есть круглая пицца. Разрешается провести не более 100 прямолинейных разрезов, не перекладывая части до окончания разрезаний, после чего распределить все получившиеся кусочки между всеми друзьями так, чтобы каждый получил суммарно одну и ту же долю пиццы по площади. Найдутся ли такие разрезания, если а) N = 201; б) N = 400?

ВверхВниз   Решение


В выпуклом четырёхугольнике MNPQ диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S.
Найдите NS, если известно, что около четырёхугольника MNPQ можно описать окружность,  PQ = 12,  SQ = 9.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 500]      



Задача 53009

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Трапеция KLMN с основаниями LM и KN вписана в окружность, центр которой лежит на основании KN. Диагональ LN трапеции равна 4, а угол MNK равен 60o. Найдите основание LM трапеции.

Прислать комментарий     Решение


Задача 52385

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Связь величины угла с длиной дуги и хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Во вписанном четырёхугольнике ABCD известны углы:  ∠DAB = α,  ∠ABC = β,  ∠BKC = γ,  где K – точка пересечения диагоналей. Найдите угол ACD.

Прислать комментарий     Решение


Задача 52404

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике MNPQ диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S.
Найдите NS, если известно, что около четырёхугольника MNPQ можно описать окружность,  PQ = 12,  SQ = 9.

Прислать комментарий     Решение

Задача 52406

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Продолжение медианы AM треугольника ABC пересекает его описанную окружность в точке D. Найдите BC, если  AC = DC = 1.

Прислать комментарий     Решение

Задача 52407

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая его описанную окружность в точке E.
Найдите AC, если  CE = 3  и  DE = DC.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 500]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .