ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Автор: Фомин Д.

Во вписанном четырёхугольнике ABCD длины сторон BC и CD равны. Докажите, что площадь этого четырёхугольника равна  ½ AC² sin∠A.

Вниз   Решение


Cерединный перпендикуляр к стороне $AC$ треугольника $ABC$ пересекает прямые $BC$, $AB$ в точках $A_{1}$ и $C_{1}$ соответственно. Точки $O$, $O_{1}$ – центры описанных окружностей треугольников $ABC$ и $A_{1}BC_{1}$ соответственно. Докажите, что $C_{1}O_1\perp AO$.

ВверхВниз   Решение


Даны правильная четырёхугольная пирамида SABCD и цилиндр, центр симметрии которого лежит на прямой SO ( SO – высота пирамиды). Точка E – середина апофемы грани BSC , точка F принадлежит ребру SD , причём SF=2FD . Прямоугольник, являющийся одним из осевых сечений цилиндра, расположен так, что две его вершины лежат на прямой AB , а одна из двух других вершин лежит на прямой EF . Найдите объём цилиндра, если SO=12 , AB=4 .

ВверхВниз   Решение


Даны правильная четырёхугольная пирамида SABCD и конус, центр основания которого лежит на прямой SO ( SO – высота пирамиды). Точка E – середина ребра SD , точка F лежит на ребре AD , причём AF=FD . Треугольник, являющийся одним из осевых сечений конуса, расположен так, что две его вершины лежат на прямой CD , а третья – на прямой EF . Найдите объём конуса, если AB=4 , SO=3 .

ВверхВниз   Решение


Участники шахматного турнира сыграли друг с другом по одной партии. Для каждого участника A было подсчитано число набранных им очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков) и коэффициент силы по формуле: сумма очков тех участников, у кого A выиграл, минус сумма очков тех, кому он проиграл.
  а) Могут ли коэффициенты силы всех участников быть больше 0?
  б) Могут ли коэффициенты силы всех участников быть меньше 0?

ВверхВниз   Решение


На сторонах произвольного треугольника ABC во внешнюю сторону построены равносторонние треугольники ABC1, A1BC и AB1C.
Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 831]      



Задача 86482

 [Караван верблюдов]
Темы:   [ Задачи на движение ]
[ Геометрические интерпретации в алгебре ]
[ Графики и ГМТ на координатной плоскости ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 7,8

По пустыне равномерно движется караван верблюдов длиной в 1 км. Всадник проехал от конца каравана к началу и вернулся к концу каравана. За это время караван прошел 1 км. Какой путь проехал всадник, если скорость его была постоянной?

Прислать комментарий     Решение

Задача 116670

Темы:   [ Касательные прямые и касающиеся окружности (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Медиана, проведенная к гипотенузе ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 7,8

Автор: Фольклор

Через точку Y на стороне AB равностороннего треугольника ABC проведена прямая, пересекающая сторону BC в точке Z, а продолжение стороны CA за точку A – в точке X. Известно, что  XY = YZ  и  AY = BZ.  Докажите, что прямые XZ и BC перпендикулярны.

Прислать комментарий     Решение

Задача 52420

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательная окружность ]
[ Точка Торричелли ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-
Классы: 8,9

На сторонах произвольного треугольника ABC во внешнюю сторону построены равносторонние треугольники ABC1, A1BC и AB1C.
Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 54455

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Медиана, проведенная к гипотенузе ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB,  O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что
FC = b,  OC = 3b/2.  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Задача 64624

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4-
Классы: 8,9,10

Автор: Жуков Г.

Дан вписанный четырёхугольник ABCD. Лучи AB и DC пересекаются в точке K. Оказалось, что точки B, D, а также середины M и N отрезков AC и KC лежат на одной окружности. Какие значения может принимать угол ADC?

Прислать комментарий     Решение

Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 831]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .