ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Продолжение общей хорды AB двух пересекающихся окружностей радиусов R и r пересекает их общую касательную в точке C (A между B и C, M и N — точки касания). Найдите:

1) радиус окружности, проходящей через точки A, M и N;

2) отношение расстояний от точки C до прямых AM и AN.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 149]      



Задача 116311

Темы:   [ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Отрезок AL является биссектрисой треугольника ABC . Окружность радиуса 3 проходит через вершину A , касается стороны BC в точке L и пересекает сторону AB в точке K . Найдите угол BAC и площадь треугольника ABC , если BC=4 , AK:LB=3:2 .
Прислать комментарий     Решение


Задача 52476

Темы:   [ Теорема синусов ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4+
Классы: 8,9

Две окружности радиусов R и r пересекаются в точках A и B и касаются прямой в точках C и D; N — точка пересечения прямых AB и CD (B между A и N). Найдите:

1) радиус окружности, описанной около треугольника ACD;

2) отношение высот треугольников NAC и NAD, опущенных из вершины N.

Прислать комментарий     Решение


Задача 52477

Темы:   [ Теорема синусов ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4+
Классы: 8,9

Продолжение общей хорды AB двух пересекающихся окружностей радиусов R и r пересекает их общую касательную в точке C (A между B и C, M и N — точки касания). Найдите:

1) радиус окружности, проходящей через точки A, M и N;

2) отношение расстояний от точки C до прямых AM и AN.

Прислать комментарий     Решение


Задача 52444

Темы:   [ Касающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 8,9

Две окружности радиусов r и R (r < R) касаются друг друга внешним образом. Прямая касается этих окружностей в точках M и N. В точках A и B окружности касаются внешним образом третьей окружности. Прямые AB и MN пересекаются в точке C. Из точки C проведена касательная к третьей окружности (D — точка касания). Найдите CD.

Прислать комментарий     Решение


Задача 111839

Темы:   [ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Две касательные, проведенные из одной точки ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства параллелограмма ]
Сложность: 5
Классы: 9,10

Две окружности σ1 и σ2 пересекаются в точках A и B . Пусть PQ и RS – отрезки общих внешних касательных к этим окружностям (точки P и R лежат на σ1 , точки Q и S – на σ2 ). Оказалось, что RB|| PQ . Луч RB вторично пересекает σ2 в точке W . Найдите отношение RB/BW .
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .