ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 149]      



Задача 52454

Темы:   [ Вспомогательная окружность ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5+
Классы: 8,9

Противоположные стороны четырёхугольника, вписанного в окружность, пересекаются в точках P и Q. Найдите PQ, если касательные к окружности, проведённые из точек P и Q, равны a и b.

Прислать комментарий     Решение


Задача 53256

Темы:   [ Касающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 5+
Классы: 8,9

В полукруг помещены две окружности диаметром d и D (d < D) так, что каждая окружность касается дуги и диаметра полукруга, а также другой окружности. Через центры окружностей проведена прямая, пересекающая продолжение диаметра полукруга в точке M. Из точки M проведена касательная к дуге полукруга (N — точка касания). Найдите MN.

Прислать комментарий     Решение


Задача 109670

Темы:   [ Гомотетия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 6-
Классы: 9,10,11

Проведем через основание биссектрисы угла A разностороннего треугольника ABC отличную от стороны BC касательную к вписанной в треугольник окружности. Точку ее касания с окружностью обозначим через Ka . Аналогично построим точки Kb и Kc . Докажите, что три прямые, соединяющие точки Ka , Kb и Kc с серединами сторон BC , CA и AB соответственно, имеют общую точку, причем эта точка лежит на вписанной окружности.
Прислать комментарий     Решение


Задача 78048

Темы:   [ Окружности, вписанные в сегмент ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 6
Классы: 9,10

Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.
Прислать комментарий     Решение


Задача 52977

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 8,9

В треугольнике ABC угол A прямой, катет AB равен a, радиус вписанной окружности равен r . Вписанная окружность касается катета AC в точке D.
Найдите хорду, соединяющую точки пересечения окружности с прямой BD.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .