ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть r — радиус окружности, вписанной в прямоугольный треугольник с катетами a, b и гипотенузой c. Докажите, что
r = .
Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 112]
Пусть r — радиус окружности, вписанной в прямоугольный треугольник с катетами a, b и гипотенузой c. Докажите, что
r = .
В треугольнике ABC угол B прямой, величина угла A равна α (α < 45°), точка D – середина гипотенузы. Точка C1 симметрична точке C относительно прямой BD. Найдите угол AC1B.
В прямоугольном треугольнике ABC к гипотенузе AB проведена
высота CD. На отрезках CD и DA взяты точки E и F соответственно, причём
В прямоугольный треугольник с катетами 6 и 8, вписан квадрат, имеющий с треугольником общий прямой угол. Найдите сторону квадрата.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 112] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|