Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Обязательно ли равны два равнобедренных треугольника, у которых равны боковые стороны и радиусы вписанных окружностей?

Вниз   Решение


а) Докажите, что центр масс существует и единствен для любой системы точек.
б) Докажите, что если X — произвольная точка, а O — центр масс точек X1,..., Xn с массами m1,..., mn, то $ \overrightarrow{XO}$ = $ {\frac{1}{m_1+\ldots+m_n}}$(m1$ \overrightarrow{XX_1}$ +...+ mn$ \overrightarrow{XX_n}$).

ВверхВниз   Решение


Пусть an – число решений уравнения  x1 + ... + xk = n   в целых неотрицательных числах и F(x) – производящая функция последовательности an.
  а) Докажите равенства:  F(x) = (1 + x + x² + ...)k = (1 – x)k.
  б) Найдите формулу для an, пользуясь задачей 61490.

ВверхВниз   Решение


В комнате находятся 85 воздушных шаров  — красных и синих. Известно, что: 1) по крайней мере один из шаров красный; 2) из каждой произвольно выбранной пары шаров по крайней мере один синий. Сколько в комнате красных шаров?

ВверхВниз   Решение


Каждая из двух сторон треугольника разделена на семь равных частей; соответствующие точки деления соединены отрезками.
Найдите эти отрезки, если третья сторона треугольника равна 28.

ВверхВниз   Решение


Автор: Анджанс А.

В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

ВверхВниз   Решение


Встречается ли в треугольнике Паскаля число 1999?

ВверхВниз   Решение


Около данного круга опишите равнобедренный прямоугольный треугольник.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 790]      



Задача 53196

Темы:   [ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2-
Классы: 8,9

В окружность вписан равнобедренный треугольник с основанием a и углом при основании $ \alpha$. Кроме того, построена вторая окружность, касающаяся первой окружности и основания треугольника, причём точка касания является серединой основания. Найдите радиус второй окружности. Если решение не единственное, рассмотрите все случаи.

Прислать комментарий     Решение


Задача 52346

Темы:   [ Вписанные и описанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 2
Классы: 8,9

Докажите, что центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы.

Прислать комментарий     Решение

Задача 34919

Тема:   [ Вписанные и описанные окружности ]
Сложность: 2
Классы: 8,9

Обязательно ли равны два равнобедренных треугольника, у которых равны боковые стороны и радиусы вписанных окружностей?
Прислать комментарий     Решение


Задача 52625

Тема:   [ Вписанные и описанные окружности ]
Сложность: 2
Классы: 8,9

Около данного круга опишите равнобедренный прямоугольный треугольник.

Прислать комментарий     Решение


Задача 52616

Тема:   [ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 8,9

Гипотенуза прямоугольного треугольника равна 4 м. Найдите радиус описанной окружности.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 790]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .