ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В равнобедренный треугольник ABC с основанием AC вписана окружность, которая касается боковой стороны AB в точке M. Из точки M опущен перпендикуляр ML на сторону AC. Найдите величину угла C, если известно, что площадь треугольника ABC равна 1, а площадь четырёхугольника LMBC равна s. Решение |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 769]
Внутри прямого угла KLM взята точка P. Окружность S1 с центром O1 касается сторон LK и LP угла KLP в точках A и D соответственно, а окружность S2 с центром O2 такого же радиуса касается сторон угла MLP, причём стороны LP – в точке B. Оказалось, что точка O1 лежит на отрезке AB. Пусть C – точка пересечения прямых O2D и KL. Докажите, что BC – биссектриса угла ABD.
С помощью циркуля и линейки постройте общие касательные к двум данным окружностям.
В равнобедренный треугольник ABC с основанием AC вписана окружность, которая касается боковой стороны AB в точке M. Из точки M опущен перпендикуляр ML на сторону AC. Найдите величину угла C, если известно, что площадь треугольника ABC равна 1, а площадь четырёхугольника LMBC равна s.
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|