ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны две непересекающиеся окружности радиусов R и 2R. К ним проведены общие касательные, которые пересекаются в точке A отрезка, соединяющего центры окружностей. Расстояние между центрами окружностей равно 2R. Найдите площадь фигуры, ограниченной отрезками касательных, заключёнными между точками касания и большими дугами окружностей, соединяющими точки касания. Решение |
Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 769]
Найдите отношение радиусов двух окружностей, касающихся между собой, если каждая из них касается сторон угла, равного .
В треугольнике ABC известно, что BC = a, A = , B = . Найдите радиус окружности, касающейся стороны AC в точке A и касающейся стороны BC.
Даны две непересекающиеся окружности. К ним проведены общие касательные, которые пересекаются в точке A отрезка, соединяющего центры окружностей. Радиус меньшей окружности равен R. Расстояние от точки A до центра окружности большего радиуса равно 6R. Точка A делит отрезок касательной, заключённый между точками касания, в отношении 1:3. Найдите площадь фигуры, ограниченной отрезками касательных и большими дугами окружностей, соединяющими точки касания.
Даны две непересекающиеся окружности радиусов R и 2R. К ним проведены общие касательные, которые пересекаются в точке A отрезка, соединяющего центры окружностей. Расстояние между центрами окружностей равно 2R. Найдите площадь фигуры, ограниченной отрезками касательных, заключёнными между точками касания и большими дугами окружностей, соединяющими точки касания.
Дан треугольник ABC. Окружность радиуса R касается стороны AC в точке M и стороны BC в точке P. Сторона AB пересекает эту окружность в точках K и E (точка E лежит на отрезке BK). Найдите BE, зная, что BC = a, CM = b < a, KME = .
Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|