ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны две непересекающиеся окружности, к которым проведены две общие внешние касательные. Рассмотрим равнобедренный треугольник, основание которого лежит на одной касательной, противоположная вершина – на другой, а каждая из боковых сторон касается одной из данных окружностей. Докажите, что высота треугольника равна сумме радиусов окружностей.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 283]      



Задача 53039

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Вписанная окружность треугольника ABC, касается стороны BC в точке M.
Докажите, что вписанные окружности треугольника ABM и ACM, касаются отрезка AM в одной точке.

Прислать комментарий     Решение

Задача 53137

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3+
Классы: 8,9

Даны две непересекающиеся окружности, к которым проведены две общие внешние касательные. Рассмотрим равнобедренный треугольник, основание которого лежит на одной касательной, противоположная вершина – на другой, а каждая из боковых сторон касается одной из данных окружностей. Докажите, что высота треугольника равна сумме радиусов окружностей.

Прислать комментарий     Решение

Задача 53176

Темы:   [ Признаки подобия ]
[ Две касательные, проведенные из одной точки ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC катет AB равен 21, а катет BC равен 28. Окружность, центр O которой лежит на гипотенузе AC, касается обоих катетов.
Найдите радиус окружности.

Прислать комментарий     Решение

Задача 53301

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

В треугольник вписана окружность радиуса r. Касательные к этой окружности, параллельные сторонам треугольника, отсекают от него три маленьких треугольника. Пусть r1, r2, r3 – радиусы вписанных в эти треугольники окружностей. Докажите, что  r1 + r2 + r3 = r.

Прислать комментарий     Решение

Задача 55408

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

На сторонах BC, CA, и AB треугольника ABC взяты точки A1, B1 и C1, причём  AC1 = AB1BA1 = BC1  и  CA1 = CB1.
Докажите, что A1, B1 и C1 – точки касания вписанной окружности со сторонами треугольника.

Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 283]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .