ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны три попарно различные точки на прямой. Сколько существует равнобедренных треугольников, в которых они являются (в каком-нибудь порядке) центрами описанной, вписанной и вневписанной окружностей? Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1 ≤ P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1 ≤ P2S2 + P3S3 + P4S4. Каждая грань выпуклого многогранника – многоугольник с чётным числом
сторон. На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что
KL || MN и |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]
Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что
KL || MN и
Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.
На высоте BD треугольника ABC взята такая точка E, что ∠AEC = 90°. Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.
Бильярдный стол имеет вид прямоугольника 2×1, в углах и на серединах больших сторон которого расположены лузы. Какое наименьшее число шаров надо расположить внутри прямоугольника, чтобы каждая луза находилась на одной линии с некоторыми двумя шарами?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке