ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 157]      



Задача 64879

Темы:   [ Три точки, лежащие на одной прямой ]
[ Ортоцентр и ортотреугольник ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Из некоторой точки D в плоскости треугольника ABC провели прямые, перпендикулярные к отрезкам DA, DB, DC, которые пересекают прямые BC, AC, AB в точках A1, B1, C1 соответственно. Докажите, что середины отрезков AA1, BB1, CC1 лежат на одной прямой.

Прислать комментарий     Решение

Задача 108202

Темы:   [ Три точки, лежащие на одной прямой ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4+
Классы: 8,9

Автор: Сонкин М.

Окружность с центром O вписана в треугольник ABC и касается его сторон AB, BC и AC в точках E, F и D соответственно. Прямые AO и CO пересекают прямую EF в точках M и N. Докажите, что центр окружности, описанной около треугольника OMN, точка O и точка D лежат на одной прямой.

Прислать комментарий     Решение

Задача 65049

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Теоремы Чевы и Менелая ]
[ Отношения линейных элементов подобных треугольников ]
[ Решение задач при помощи аффинных преобразований ]
Сложность: 5-
Классы: 10,11

Дан треугольник ABC и прямая l, пересекающая BC, CA и AB в точках A1, B1 и C1 соответственно. Точка A' – середина отрезка, соединяющего проекции A1 на AB и AC. Аналогично определяются точки B' и C'.
  а) Докажите, что A', B' и C' лежат на некоторой прямой l'.
  б) Докажите, что, если l проходит через центр описанной окружности треугольника ABC, то l' проходит через центр его окружности девяти точек.

Прислать комментарий     Решение

Задача 53910

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой.

Прислать комментарий     Решение

Задача 53413

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9

Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника AB1C1 пересекаются в точке N.
Докажите, что точки A, M и N лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .