ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точка E стороны BC и точка F стороны AD выпуклого четырёхугольника ABCD расположены так, что BE = 2EC, AF = 2FD. На отрезке AE находится центр окружности радиуса r, касающейся сторон AB, BC и CD. На отрезке BF находится центр окружности такого же радиуса r, касающейся сторон AB, AD и CD. Найдите площадь четырёхугольника ABCD, зная, что указанные окружности внешним образом касаются друг друга. Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
В выпуклом четырёхугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны AB. Первая окружность касается сторон AB, AD и CD, а вторая окружность касается сторон AB, BC и CD. Найдите AC.
Докажите, что биссектриса треугольника не меньше высоты и не больше медианы, проведённых из той же вершины.
Внутри треугольника ABC взята точка M. Докажите, что
AM . BC + BM . AC + CM . AB 4S,
где S — площадь треугольника ABC.
Точка E стороны BC и точка F стороны AD выпуклого четырёхугольника ABCD расположены так, что BE = 2EC, AF = 2FD. На отрезке AE находится центр окружности радиуса r, касающейся сторон AB, BC и CD. На отрезке BF находится центр окружности такого же радиуса r, касающейся сторон AB, AD и CD. Найдите площадь четырёхугольника ABCD, зная, что указанные окружности внешним образом касаются друг друга.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|