ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В равнобедренный треугольник ABC с основанием AC вписана окружность, которая касается боковой стороны AB в точке M. Из точки M опущен перпендикуляр ML на сторону AC. Найдите величину угла C, если известно, что площадь треугольника ABC равна 1, а площадь четырёхугольника LMBC равна s.

Вниз   Решение


Через середину S отрезка MN, концы которого лежат на боковых сторонах равнобедренного треугольника, проведена прямая, параллельная основанию треугольника и пересекающая боковые стороны в точках K и L. Докажите, что проекция отрезка MN на основание треугольника равна отрезку KL.

Вверх   Решение

Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 603]      



Задача 52777

Темы:   [ Две касательные, проведенные из одной точки ]
[ Отношение площадей подобных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

В равнобедренный треугольник ABC с основанием AC вписана окружность, которая касается боковой стороны AB в точке M. Из точки M опущен перпендикуляр ML на сторону AC. Найдите величину угла C, если известно, что площадь треугольника ABC равна 1, а площадь четырёхугольника LMBC равна s.

Прислать комментарий     Решение

Задача 53365

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Через середину S отрезка MN, концы которого лежат на боковых сторонах равнобедренного треугольника, проведена прямая, параллельная основанию треугольника и пересекающая боковые стороны в точках K и L. Докажите, что проекция отрезка MN на основание треугольника равна отрезку KL.

Прислать комментарий     Решение

Задача 53390

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC  ∠B = 36°, ∠C = 42°.  На стороне BC взята точка M так, что  BM = R,  где R – радиус описанной окружности треугольника ABC.
Найдите угол MAC.

Прислать комментарий     Решение

Задача 53577

Темы:   [ Ромбы. Признаки и свойства ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

На сторонах AD и DC ромба ABCD построены правильные треугольники AKD и DMC, причём точка K лежит по ту же сторону от AD, что и прямая BC, а точка M – по другую сторону от DC, чем AB. Докажите, что точки B, K и M лежат на одной прямой.

Прислать комментарий     Решение

Задача 53732

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки подобия ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC на высоте AD взята точка M, а на высоте BP – точка N так, что углы BMC и ANC – прямые. Расстояние между точками M и N равно  4 + 2,  угол MCN равен 30°. Найдите биссектрису CL треугольника CMN.

Прислать комментарий     Решение

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .