Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.

Вниз   Решение


В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны    и  .  Найдите гипотенузу треугольника.

ВверхВниз   Решение


Докажите, что для любого простого числа  p > 2  числитель дроби  m/n = 1/1 + 1/2 + ... + 1/p–1  делится на p.

ВверхВниз   Решение


В равнобедренном треугольнике $ABC$ ($AC=BC$) $O$ – центр описанной окружности, $H$ – ортоцентр, $P$ – такая точка внутри треугольника, что $\angle APH=\angle BPO=\pi/2$. Докажите, что $\angle PAC=\angle PBA=\angle PCB$.

ВверхВниз   Решение


а) Докажите, что  ma2 + mb2 + mc2 $ \leq$ 27R2/4.
б) Докажите, что  ma + mb + mc $ \leq$ 9R/2.

ВверхВниз   Решение


Квадратный лист клетчатой бумаги разбит на меньшие квадраты отрезками, идущими по сторонам клеток.
Докажите, что сумма длин этих отрезков делится на 4. (Длина стороны клетки равна 1.)

ВверхВниз   Решение


а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD).
б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.

ВверхВниз   Решение


Высота треугольника ABC, опущенная на сторону BC, равна h, $ \angle$B = $ \beta$, $ \angle$C = $ \gamma$. Найдите остальные высоты этого треугольника.

Вверх   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1358]      



Задача 53631

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Птолемея ]
Сложность: 3+
Классы: 8,9

Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
Найдите расстояние между вершиной прямого угла треугольника и центром квадрата, если катеты треугольника равны a и b.

Прислать комментарий     Решение

Задача 53637

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике высота, проведённая к основанию, делится точкой пересечения высот пополам. Найдите углы этого треугольника.

Прислать комментарий     Решение

Задача 53675

Тема:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Высота треугольника ABC, опущенная на сторону BC, равна h, $ \angle$B = $ \beta$, $ \angle$C = $ \gamma$. Найдите остальные высоты этого треугольника.

Прислать комментарий     Решение


Задача 53827

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки подобия ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC перпендикуляр, проходящий через середину стороны AB, пересекает продолжение стороны BC в точке M, причём  MC : MB = 1 : 5.  Перпендикуляр, проходящий через середину стороны BC, пересекает сторону AC в точке N, причём  AN : NC = 1 : 2 . Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 53828

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки подобия ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC перпендикуляр, проходящий через середину стороны AB, пересекает сторону AC в точке M, причём  MA/MC = 3.  Перпендикуляр, проходящий через середину стороны AC, пересекает сторону AB в точке N, причём  AN/BN = 2.  Найдите углы треугольника ABC.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1358]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .