ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Подобные треугольники
>>
Вспомогательные подобные треугольники
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На одной из сторон угла, равного α (α < 90°), с вершиной в точке O взяты точки A и B, причём OA = a, OB = b. |
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 512]
На одной из сторон угла, равного α (α < 90°), с вершиной в точке O взяты точки A и B, причём OA = a, OB = b.
В равнобедренном треугольнике ABC (AB = BC) на высоте BD как на диаметре построена окружность. К окружности проведены касательные AM и CN, продолжения которых пересекаются в точке O. Найдите отношение AB/AC, если OM/AC = k и высота BD больше основания AC.
В равнобедренном треугольнике ABC (AB = BC) на высоте BD как на диаметре построена окружность. Через точки A и C к окружности проведены касательные AM и CN, продолжения которых пересекаются в точке O. Найдите отношение AB/AC, если OM/AC = k и высота BD меньше основания AC.
В точках A и B прямой, по одну сторону от неё, восстановлены два перпендикуляра AA1 = a и
BB1 = b.
В равнобедренной трапеции ABCD AB = CD = 3, основание
AD = 7, ∠BAD = 60°. На диагонали BD расположена точка M так, что BM : MD = 3 : 5.
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 512] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|