ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи За круглым столом сидят 13 богатырей из k городов, где 1 < k < 13. Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.
Через точку O, взятую на стороне правильного треугольника ABC, проведены прямые, параллельные сторонам AB и AC, и пересекающие стороны AC и AB в точках K и L соответственно. Окружность, проходящая через точки O, K и L пересекает стороны AC и AB соответственно в точках Q и P, отличных от K и L. Докажите, что треугольник OPQ — равносторонний.
|
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 1282]
На гипотенузе KM прямоугольного треугольника KLM расположен
центр O окружности, которая касается катетов KL и LM в точках
A и B соответственно. Найдите AK, если известно, что
BM =
Вписанная окружность треугольника A1A2A3 касается сторон A2A3, A3A1 и A1A2 в точках S1, S2 и S3 соответственно. Пусть O1, O2 и O3 – центры вписанных окружностей треугольников A1S2S3, A2S3S1 и A3S1S2 соответственно. Докажите, что прямые O1S1, O2S2 и O3S3 пересекаются в одной точке.
Через точку O, взятую на стороне правильного треугольника ABC, проведены прямые, параллельные сторонам AB и AC, и пересекающие стороны AC и AB в точках K и L соответственно. Окружность, проходящая через точки O, K и L пересекает стороны AC и AB соответственно в точках Q и P, отличных от K и L. Докажите, что треугольник OPQ — равносторонний.
Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через середину диагонали AC и пересекает сторону AB в точке M. Найдите отношение AM : AB, если AC = 3BD.
Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через середину диагонали BD и пересекает сторону CD в точке K. Найдите отношение KD : CD, если BD = 2AC.
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке