Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Точки $P$ и $Q$ выбираются на стороне $BC$ треугольника $ABC$ так, что $BP=CQ$. Отрезки $AP$ и $AQ$ в пересечении со вписанной в треугольник окружностью образуют четырехугольник $XYZT$. Найдите геометрическое место точек пересечения диагоналей таких четырехугольников.

Вниз   Решение


В квадрате со стороной длины 1 выбрано 102 точки, из которых никакие три не лежат на одной прямой. Доказать, что найдётся треугольник с вершинами в этих точках, площадь которого меньше, чем 1/100.

ВверхВниз   Решение


Периметр ромба равен 8, высота равна 1. Найдите тупой угол ромба.

ВверхВниз   Решение


Точки K, L, M и N – середины сторон соответственно AB, BC, CD и AD параллелограмма ABCD.
Докажите, что четырёхугольник с вершинами в точках пересечения прямых AL, BM, CN и DK – параллелограмм.

ВверхВниз   Решение


Через точку, лежащую внутри треугольника, проведены три прямые, параллельные его сторонам. Обозначим площади частей, на которые эти прямые разбивают треугольник, так, как показано на рис. Докажите, что  a/$ \alpha$ + b/$ \beta$ + c/$ \gamma$ $ \geq$ 3/2.


ВверхВниз   Решение


В квадрат, площадь которого равна 18, вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 2.
Найдите площадь прямоугольника.

ВверхВниз   Решение


В ромб вписана окружность. На какие четыре части она делится точками касания сторон, если острый угол ромба равен 37o?

ВверхВниз   Решение


ABCD — выпуклый четырехугольник площади S. Угол между прямыми AB и CD равен a, угол между AD и BC равен $ \beta$. Докажите, что

AB . CD sin$\displaystyle \alpha$ + AD . BC sin$\displaystyle \beta$ $\displaystyle \leq$ 2S $\displaystyle \leq$ AB . CD + AD . BC.


ВверхВниз   Решение


Автор: Белухов Н.

В треугольнике ABC  ALa и AMa – внутренняя и внешняя биссектрисы угла A. Пусть ωa – окружность, симметричная описанной окружности Ωa треугольника ALaMa относительно середины BC. Окружность ωb определена аналогично. Докажите, что ωa и ωb касаются тогда и только тогда, когда треугольник ABC прямоугольный.

ВверхВниз   Решение



Через середину ребра AB куба ABCDA1B1C1D1 с ребром, равным a, проведена плоскость, параллельная прямым BD1 и A1C1.

1) В каком отношении эта плоскость делит диагональ DB1?

2) Найдите площадь полученного сечения.

ВверхВниз   Решение


На продолжении ребра ST за точку T правильной четырёхугольной пирамиды SPQRT с вершиной S взята такая точка B , что расстояние от неё до плоскости SPQ равно . Найдите отрезок BT , если QR = 12 , а SR = 10 .

ВверхВниз   Решение


В равнобедренную трапецию с боковой стороной, равной 9, вписана окружность радиуса 4. Найдите площадь трапеции.

ВверхВниз   Решение


Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую -- в точках C и D. Докажите, что AB || CD.

ВверхВниз   Решение


Для каждого натурального n приведите пример прямоугольника, который разрезался бы ровно на n квадратов, среди которых должно быть не более двух одинаковых.

ВверхВниз   Решение


На доске была начерчена трапеция, в ней была проведена средняя линия EF и опущен перпендикуляр OK из точки O пересечения диагоналей на большее основание. Затем трапецию стерли. Как восстановить чертеж по сохранившимся отрезкам EF и OK?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



Задача 53884

Темы:   [ Замечательное свойство трапеции ]
[ Четырехугольники (построения) ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

На доске была начерчена трапеция, в ней была проведена средняя линия EF и опущен перпендикуляр OK из точки O пересечения диагоналей на большее основание. Затем трапецию стерли. Как восстановить чертеж по сохранившимся отрезкам EF и OK?

Прислать комментарий     Решение

Задача 55698

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Четырехугольники (построения) ]
[ Перенос помогает решить задачу ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте четырёхугольник ABCD по четырём углам и сторонам AB = a и CD = b.

Прислать комментарий     Решение


Задача 66957

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Четырехугольники (построения) ]
[ Построения одной линейкой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 9,10,11

Автор: Ратаров Д.

В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.
Прислать комментарий     Решение


Задача 54591

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте четырёхугольник по трём сторонам и углам, прилежащим к четвёртой.

Прислать комментарий     Решение


Задача 54593

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Четырехугольники (построения) ]
[ Удвоение медианы ]
Сложность: 4
Классы: 8,9

Постройте выпуклый четырёхугольник по четырём сторонам и отрезку, соединяющему середины двух противоположных сторон.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .