ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что диаметр окружности, перпендикулярный хорде, делит эту хорду пополам.

   Решение

Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 401]      



Задача 110796

Темы:   [ Пересекающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 10,11

Две окружности пересекаются в точках P и Q. Хорды MN первой окружности и KL второй окружности имеют общую точку O. Длина отрезка PQ в пять раза больше длины отрезка OL. Длина отрезка OK в два раза больше длины отрезка MO, которая, в свою очередь, в два раза больше длины отрезка OL. Какие значения может принимать длина отрезка PO, если известно, что QO = 4, а длины отрезков MO и ON равны?
Прислать комментарий     Решение


Задача 111143

Темы:   [ Объем тетраэдра и пирамиды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательная окружность ]
Сложность: 5
Классы: 10,11

Дана сфера радиуса 1 с центром в точке O . Из точки A , лежащей вне сферы, проведены четыре луча. Первый луч пересекает поверхность сферы последовательно в точках B1 и C1 , второй – в точках B2 и C2 , третий – в точках B3 и C3 , четвёртый – в точках B4 и C4 . Прямые B1B2 и C1C2 пересекаются в точке E , прямые B3B4 и C3C4 – в точке F . Найдите объём пирамиды OAEF , если AO=2 , EO=FO=3 , а угол между гранями AOE и AOF равен 30o .
Прислать комментарий     Решение


Задача 111144

Темы:   [ Объем тетраэдра и пирамиды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательная окружность ]
Сложность: 5
Классы: 10,11

Дана сфера радиуса 2 с центром в точке O . Из точки K , лежащей вне сферы, проведены четыре луча. Первый луч пересекает поверхность сферы последовательно в точках L1 И M1 , второй – в точках L2 и M2 , третий – в точках L3 и M3 , четвёртый – в точках L4 и M4 . Прямые L1L2 и M1M2 пересекаются в точке A , прямые L3L4 и M3M4 – в точке B . Найдите объём пирамиды KOAB , если KO=3 , AO=BO=4 , а угол между гранями KOA и KOB равен 60o .
Прислать комментарий     Решение


Задача 53911

Темы:   [ Диаметр, основные свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что диаметр окружности, перпендикулярный хорде, делит эту хорду пополам.

Прислать комментарий     Решение

Задача 53912

Темы:   [ Диаметр, основные свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.

Прислать комментарий     Решение

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .