Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что число x является элементом приведённой системы вычетов тогда и только тогда, когда числа a1, ..., an, определённые сравнениями
x ≡ a1 (mod m1),  ..., x ≡ an (mod mn)  принадлежат приведённым системам вычетов по модулям m1, ..., mn соответственно. Выведите отсюда мультипликативность функции Эйлера.

Вниз   Решение


Докажите, что высота неравнобедренного прямоугольного треугольника, проведённая из вершины прямого угла, меньше половины гипотенузы.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 375]      



Задача 55154

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 2+
Классы: 8,9

Докажите, что сумма высот треугольника меньше его периметра.

Прислать комментарий     Решение


Задача 55157

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3-
Классы: 8,9

Докажите, что площадь треугольника ABC не превосходит $ {\frac{1}{2}}$AB . AC.

Прислать комментарий     Решение


Задача 55258

Темы:   [ Неравенства для углов треугольника ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Определите вид треугольника (относительно его углов), если даны три стороны (или их отношения):

1) 2, 3, 4;

2) 3, 4, 5;

3) 4, 5, 6;

4) 10, 15, 18;

5) 68, 119, 170.

Прислать комментарий     Решение


Задача 107701

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3-
Классы: 7,8,9

Из точки M внутри четырёхугольника ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне AB — через X, лежащее на стороне BC — через Y, лежащее на стороне CD — через Z, лежащее на стороне DA — через T. Известно, что AXXB, BYYC, CZZD, DTTA. Докажите, что вокруг четырёхугольника ABCD можно описать окружность.
Прислать комментарий     Решение


Задача 54010

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3-
Классы: 8,9

Докажите, что высота неравнобедренного прямоугольного треугольника, проведённая из вершины прямого угла, меньше половины гипотенузы.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .