ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Постройте параллелограмм по двум соседним сторонам и углу между ними.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 993]      



Задача 116335

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9,10

Две вершины квадрата расположены на гипотенузе равнобедренного прямоугольного треугольника, а две другие – на катетах.
Найдите сторону квадрата, если гипотенуза равна a.

Прислать комментарий     Решение

Задача 35785

Темы:   [ Признаки и свойства параллелограмма ]
[ Метод координат в пространстве (прочее) ]
Сложность: 2+
Классы: 10,11

В пространстве даны параллелограмм ABCD и плоскость M. Расстояния от точек A, B и C до плоскости M равны соответственно a, b и c.
Найти расстояние d от вершины D до плоскости M.

Прислать комментарий     Решение

Задача 54075

Тема:   [ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Постройте параллелограмм по двум соседним сторонам и углу между ними.

Прислать комментарий     Решение


Задача 54077

Тема:   [ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O. Периметр параллелограмма равен 12, а разность периметров треугольников BOC и COD равна 2. Найдите стороны параллелограмма.

Прислать комментарий     Решение


Задача 107674

Темы:   [ Признаки и свойства параллелограмма ]
[ Наименьший или наибольший угол ]
[ Общие четырехугольники ]
Сложность: 2+
Классы: 7,8,9

Из всякого ли выпуклого четырехугольника можно вырезать параллелограмм, три вершины которого совпадают с тремя вершинами этого четырехугольника?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .