ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На продолжении медианы AM треугольника ABC за точку M отложен отрезок MD, равный AM. Докажите, что четырёхугольник ABDC — параллелограмм.

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 402]      



Задача 116022

Темы:   [ Трапеции (прочее) ]
[ Признаки и свойства параллелограмма ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

В трапеции ABCD биссектриса тупого угла B пересекает основание AD в точке K – его середине, M – середина BC,  AB = BC.
Найдите отношение  KM : BD.

Прислать комментарий     Решение

Задача 53428

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Докажите, что расстояние от каждой точки одной из двух параллельных прямых до второй прямой одно и то же.

Прислать комментарий     Решение

Задача 54079

Темы:   [ Удвоение медианы ]
[ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

На продолжении медианы AM треугольника ABC за точку M отложен отрезок MD, равный AM. Докажите, что четырёхугольник ABDC — параллелограмм.

Прислать комментарий     Решение


Задача 54168

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Боковые стороны трапеции равны 7 и 11, а основания — 5 и 15. Прямая, проведённая через вершину меньшего основания параллельно большей боковой стороне, отсекает от трапеции треугольник. Найдите его стороны.

Прислать комментарий     Решение


Задача 54528

Темы:   [ Построение треугольников по различным элементам ]
[ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

С помощью циркуля и линейки постройте параллелограмм ABCD по отрезкам AB, AC и AD.

Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .