ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что в прямоугольной трапеции разность квадратов диагоналей равна разности квадратов оснований.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1659]      



Задача 53408

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Две высоты треугольника равны. Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Задача 53902

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

На продолжениях гипотенузы AB прямоугольного треугольника ABC за точки A и B соответственно взяты точки K и M, причём  AK = AC  и  BM = BC.  Найдите угол MCK.

Прислать комментарий     Решение

Задача 54237

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Катеты прямоугольного треугольника относятся как 5:6, а гипотенуза равна 122. Найдите отрезки, на которые высота делит гипотенузу.

Прислать комментарий     Решение


Задача 54243

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

Из одной точки проведены к данной прямой перпендикуляр и две наклонные.
Найдите длину перпендикуляра, если наклонные равны 41 и 50, а их проекции на данную прямую относятся как  3 : 10.

Прислать комментарий     Решение

Задача 54249

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Перенос стороны, диагонали и т.п. ]
Сложность: 3-
Классы: 8,9

Докажите, что в прямоугольной трапеции разность квадратов диагоналей равна разности квадратов оснований.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1659]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .