ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан треугольник ABC. Окружность радиуса R касается прямых AB и BC в точках A и C и пересекает медиану BD в точке L, причём  BL = 5/9 BD.
Найдите площадь треугольника.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 283]      



Задача 54324

Темы:   [ Две касательные, проведенные из одной точки ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. Окружность радиуса R касается прямых AB и BC в точках A и C и пересекает медиану BD в точке L, причём  BL = 5/9 BD.
Найдите площадь треугольника.

Прислать комментарий     Решение

Задача 54678

Темы:   [ Две касательные, проведенные из одной точки ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 8,9

Дан треугольник со сторонами a, b и c. Прямая, параллельная стороне, равной a, касается вписанной окружности треугольника и пересекает две другие стороны в точках M и N. Найдите MN.

Прислать комментарий     Решение

Задача 55482

Темы:   [ Две касательные, проведенные из одной точки ]
[ Отношения линейных элементов подобных треугольников ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

В треугольник с периметром, равным 20, вписана окружность. Отрезок касательной, проведённый к окружности параллельно основанию, заключённый между сторонами треугольника, равен 2,4. Найдите основание треугольника.

Прислать комментарий     Решение

Задача 64193

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 9,10,11

Дан треугольник со сторонами AB=2, BC=3, AC=4. В него вписана окружность, и точка M касания окружности со стороной BC соединена с точкой A. В треугольники AMB и AMC вписаны окружности. Найти расстояние между точками их касания с прямой AM.
Прислать комментарий     Решение


Задача 65405

Темы:   [ Две касательные, проведенные из одной точки ]
[ Три прямые, пересекающиеся в одной точке ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3+
Классы: 9,10,11

Звенья AB, BC и CD ломаной ABCD равны по длине и касаются некоторой окружности.
Доказать, что точка K касания этой окружности со звеном BC, её центр O и точка пересечения прямых AC и BD лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 283]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .