ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В трапеции ABCD известно, что BAD = 45o, ADC = 90o. Окружность, центр которой лежит на отрезке AD, касается прямых AB, BC и CD. Найдите площадь трапеции, если радиус окружности равен R. Решение |
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 312]
Прямоугольный треугольник с острым углом α расположен внутри окружности радиуса R так, что гипотенуза треугольника является хордой окружности, а вершина прямого угла треугольника лежит на диаметре, параллельном гипотенузе. Найдите площадь этого треугольника.
Внутри прямоугольного треугольника АВС выбрана произвольная точка Р, из которой опущены перпендикуляры PK и РМ на катеты АС и ВС соответственно. Прямые АР и ВР пересекают катеты в точках A' и B' соответственно. Известно, что SAPB' : SKPB' = m. Найдите SMPA' : SBPA'.
В равнобедренный треугольник ABC вписан квадрат так, что две его вершины лежат на основании BC, а две другие — на боковых сторонах треугольника. Сторона квадрата относится к радиусу круга, вписанного в треугольник, как 8:5. Найдите углы треугольника.
В прямоугольный треугольник ABC вписан квадрат AEKM так, что точка K лежит на гипотенузе, а E и M — на катетах. Сторона этого квадрата относится к радиусу круга, вписанного в треугольник ABC, как . Найдите углы треугольника.
В трапеции ABCD известно, что BAD = 45o, ADC = 90o. Окружность, центр которой лежит на отрезке AD, касается прямых AB, BC и CD. Найдите площадь трапеции, если радиус окружности равен R.
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 312] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|