ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан ромб KLMN. На продолжении стороны KN за точку N взята точка P так, что  KP = 40.  Прямые KM и LP пересекаются в точке O. Точки K, L и O лежат на окружности радиуса 15 с центром на отрезке KP. Найдите KM.

   Решение

Задачи

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 603]      



Задача 53883

Темы:   [ Вспомогательные подобные треугольники ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC, все стороны которого различны, биссектриса внешнего угла, смежного с углом ACB, пересекает продолжение стороны BA в точке D (A между B и D). Известно, что  BD – BC = m,  AC + AD = n.  Найдите CD.

Прислать комментарий     Решение

Задача 54147

Темы:   [ Средняя линия треугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Сторона AB треугольника ABC больше стороны AC, а  ∠A = 40°. Точка D лежит на стороне AB, причём  BD = AC.  Точки M и N – середины отрезков BC и AD соответственно. Найдите угол BNM.

Прислать комментарий     Решение

Задача 54387

Темы:   [ Ромбы. Признаки и свойства ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Дан ромб KLMN. На продолжении стороны KN за точку N взята точка P так, что  KP = 40.  Прямые KM и LP пересекаются в точке O. Точки K, L и O лежат на окружности радиуса 15 с центром на отрезке KP. Найдите KM.

Прислать комментарий     Решение

Задача 55681

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Серединный перпендикуляр к стороне AB треугольника ABC пересекает сторону AC в точке K, причём точка K делит ломаную ACB на две части равной длины. Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Задача 56881

Темы:   [ Тригонометрические уравнения ]
[ Разложение на множители ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Пусть  x = sin 18°.  Докажите, что  4x² + 2x = 1.

Прислать комментарий     Решение

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .