Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

С помощью циркуля и линейки постройте отрезок, равный и параллельный данному, так, чтобы его концы лежали на данной прямой и на данной окружности.

Вниз   Решение


Для передачи сообщений по телеграфу каждая буква русского алфавита (Е и Ё отождествлены) представляется в виде пятизначной комбинации из нулей и единиц, соответствующих двоичной записи номера данной буквы в алфавите (нумерация букв начинается с нуля). Например, буква А представляется в виде 00000, буква Б - 00001, буква Ч – 10111, буква Я – 11111. Передача пятизначной комбинации производится по кабелю, содержащему пять проводов. Каждый двоичный разряд передается по отдельному проводу. При приеме сообщения Криптоша перепутал провода, поэтому вместо переданного слова получен набор букв ЭАВЩОЩИ. Найдите переданное слово.

ВверхВниз   Решение


AL – биссектриса треугольника ABC , K – точка на стороне AC , причём CK=CL . Прямая LK и биссектриса угла B пересекаются в точке P . Докажите, что AP=PL .

ВверхВниз   Решение


Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 107]      



Задача 54256

Темы:   [ Вспомогательные подобные треугольники ]
[ Средняя линия трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В прямоугольной трапеции основания равны 17 и 25, а большая боковая сторона равна 10. Через середину M этой стороны проведён к ней перпендикуляр, пересекающий продолжение второй боковой стороны в точке P. Найдите MP.

Прислать комментарий     Решение

Задача 54547

Темы:   [ Средняя линия треугольника ]
[ Средняя линия трапеции ]
[ ГМТ - прямая или отрезок ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.

Прислать комментарий     Решение

Задача 98329

Темы:   [ Шестиугольники ]
[ Средняя линия трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 10,11

Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.

Прислать комментарий     Решение

Задача 98606

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия трапеции ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

На боковых сторонах AB и BC равнобедренного треугольника ABC взяты точки K и L соответственно, так что  AK + LC = KL.  Из середины M отрезка KL провели прямую, параллельную BC, и эта прямая пересекла сторону AC в точке N. Найдите величину угла KNL.

Прислать комментарий     Решение

Задача 108531

Темы:   [ Метод координат на плоскости ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Пусть  M(x0, y0)  – середина отрезка с концами в точках  A(x1, y1)  и  B(x2, y2).  Докажите, что  x0 = ½ (x1 + x2),  y0 = ½ (y1 + y2).

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .