ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Постройте треугольник ABC, зная три точки A1, B1, C1, в которых биссектрисы его углов пересекают описанную окружность.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 64]      



Задача 54569

Темы:   [ Построение треугольников по различным точкам ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 4
Классы: 8,9

Постройте треугольник ABC, зная три точки A1, B1, C1, в которых биссектрисы его углов пересекают описанную окружность.

Прислать комментарий     Решение


Задача 52487

Темы:   [ Ортоцентр и ортотреугольник ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 4+
Классы: 8,9

Автор: Куланин Е.

Для данной хорды MN окружности рассматриваются треугольники ABC, основаниями которых являются диаметры AB этой окружности, не пересекающие MN, а стороны AC и BC проходят через концы M и N хорды MN. Докажите, что высоты всех таких треугольников ABC, опущенные из вершины C на сторону AB, пересекаются в одной точке.

Прислать комментарий     Решение


Задача 55531

Темы:   [ Шестиугольники ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 4+
Классы: 8,9

В окружность вписаны треугольники T1 и T2, причём вершины треугольника T2 являются серединами дуг, на которые окружность разбивается вершинами треугольника T1. Докажите, что в шестиугольнике, являющемся пересечением треугольников T1 и T2, диагонали, соединяющие противоположные вершины, параллельны сторонам треугольника T1 и пересекаются в одной точке.

Прислать комментарий     Решение


Задача 116397

Темы:   [ Принцип Дирихле (прочее) ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 5
Классы: 10,11

100 красных точек разделили синюю окружность на 100 дуг, длины которых являются всеми натуральными числами от 1 до 100 в произвольном порядке. Докажите, что существуют две перпендикулярные хорды с красными концами.

Прислать комментарий     Решение

Задача 56538

Темы:   [ Вписанный угол (прочее) ]
[ Правильные многоугольники ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2+
Классы: 8,9

Докажите, что все углы, образованные сторонами и диагоналями правильного n-угольника, кратны  180°/n.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .