Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 64]
Диаметр AB и хорда CD пересекаются в точке M,
CMB = 73o,
угловая величина дуги BC равна
110o. Найдите величину дуги BD.
В окружность вписан четырёхугольник ABCD, диагонали которого
пересекаются в точке M. Известно, что AB = a, CD = b, ∠AMB = α.
Найдите радиус окружности.
Внутри окружности расположен выпуклый четырехугольник, продолжения
сторон которого пересекают ее в точках
A1 ,
A2 ,
B1 ,
B2 ,
C1 ,
C2 ,
D1 и
D2 960.
Докажите, что если
A1B2=B1C2=C1D2=D1A2 , то четырехугольник, образованный прямыми
A1A2 ,
B1B2 ,
C1C2 ,
D1D2 , можно вписать в окружность.
Две равные окружности пересекаются в точках
A и
B .
P – отличная
от
A и
B точка одной из окружностей,
X ,
Y – вторые точки пересечения
прямых
PA ,
PB с другой окружностью. Докажите, что прямая, проходящая через
P и перпендикулярная
AB , делит одну из дуг
XY пополам.
Треугольник ABC вписан в окружность с центром O. Прямые AC и BC вторично пересекают окружность, проходящую через точки A, O и B, в точках E и K. Докажите, что прямые OC и EK перпендикулярны.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 64]