ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Частные случаи треугольников
>>
Прямоугольные треугольники
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC проведена биссектриса CD прямого угла ACB; DM и DN являются соответственно высотами треугольников ADC и BDC. |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 1354]
В треугольнике ABC проведена биссектриса CD прямого угла ACB; DM и DN являются соответственно высотами треугольников ADC и BDC.
Окружности с центрами O1 и O2 имеют общую хорду AB, AO1B = 60o. Отношение длины первой окружности к длине второй равно . Найдите угол AO2B.
Вписанная окружность прямоугольного треугольника ABC касается гипотенузы AB в точке P, CH – высота треугольника ABC.
В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.
Окружность, вписанная в прямоугольный треугольник ABC (∠ABC = 90°), касается сторон AB, BC, AC в точках C1, A1, B1 соответственно. Вневписанная окружность касается стороны BC в точке A2. A0 – центр окружности, описанной около треугольника A1A2B1; аналогично определяется точка C0. Найдите угол A0BC0.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 1354] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|