ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
>>
Вписанная, описанная и вневписанная окружности; их радиусы
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике даны два угла β и γ и радиус R описанной окружности. Найдите радиус вписанной окружности. Решение |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 211]
В треугольнике даны два угла β и γ и радиус R описанной окружности. Найдите радиус вписанной окружности.
В треугольнике ABC AC ≤ 3, BC ≤ 4, SABC ≥ 6. Найдите радиус его описанной окружности.
а) Дан выпуклый четырёхугольник ABCD. Пусть r1 ≤ r2 ≤ r3 ≤ r4 – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что r4 > 2r3? б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть r1 ≤ r2 ≤ r3 ≤ r4 – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что r2 > 2r1?
В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 211] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|