ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Равные треугольники. Признаки равенства
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что ∠MKN = 90°. (Можно считать, что точки C и D лежат по разные стороны от точки A). Решение |
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 352]
Докажите равенство треугольников по трём медианам.
Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что ∠MKN = 90°. (Можно считать, что точки C и D лежат по разные стороны от точки A).
На сторонах произвольного треугольника ABC внешним образом построены равнобедренные треугольники с углами 2α, 2β и 2γ при вершинах A', B' и C', причём α + β + γ = 180°. Докажите, что углы треугольника A'B'C' равны α, β и γ.
На сторонах выпуклого четырёхугольника ABCD внешним образом построены подобные ромбы, причём их острые углы α прилегают к вершинам A и C. Докажите, что отрезки, соединяющие центры противоположных ромбов, равны, а угол между ними равен α.
В равнобедренном треугольнике ABC (AB = BC) средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 352] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|