ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите, что при  a, b, c > 0  имеет место неравенство  

Вниз   Решение


Дан ромб со стороной a и острым углом α.
Найдите радиус окружности, проходящей через две соседние вершины ромба и касающейся противоположной стороны ромба или её продолжения.

ВверхВниз   Решение


Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC.

ВверхВниз   Решение


Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.

ВверхВниз   Решение


В ящике 2009 носков – синих и красных. Может ли синих носков быть столько, чтобы вероятность вытащить наудачу два носка одного цвета была равна 0,5?

ВверхВниз   Решение


Можно ли расположить в пространстве четыре попарно перпендикулярные прямые?

ВверхВниз   Решение


Основание пирамиды – правильный треугольник со стороной 6. Одно из боковых рёбер перпендикулярно плоскости основания и равно 4. Найдите радиус шара, описанного около пирамиды.

ВверхВниз   Решение



Найдите объем параллелепипеда, все грани которого - равные ромбы со стороной, равной a, и острым углом 60o.

ВверхВниз   Решение


У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые.

ВверхВниз   Решение


В треугольнике ABC, площадь которого равна 1, на медиане BK взята точка M, причём  MK = ¼ BK.  Прямая AM пересекает сторону BC в точке L.
Найдите площадь треугольника ALC.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 330]      



Задача 54145

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

Высоты остроугольного треугольника ABC, проведённые из вершин B и C, равны 7 и 9, а медиана AM равна 8. Точки P и Q симметричны точке M относительно сторон AC и AB соответственно. Найдите периметр четырёхугольника APMQ.

Прислать комментарий     Решение

Задача 54330

Темы:   [ Средняя линия треугольника ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC проведены биссектриса AL и медиана CM. Точки K и N являются ортогональными проекциями точек L и M соответственно на сторону AC, причём  AK : KC = 4 : 1,  AN : NC = 3 : 7.  Найдите отношение  AL : CM.

Прислать комментарий     Решение

Задача 54331

Темы:   [ Средняя линия треугольника ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC проведены биссектриса AD и медиана BE. Точки M и N являются ортогональными проекциями точек D и E соответственно на сторону AB, причём  AM : MB = 9 : 1,  AN : NB = 2 : 3.  Найдите отношение  AD : BE.

Прислать комментарий     Решение

Задача 54547

Темы:   [ Средняя линия треугольника ]
[ Средняя линия трапеции ]
[ ГМТ - прямая или отрезок ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.

Прислать комментарий     Решение

Задача 55080

Темы:   [ Средняя линия треугольника ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC, площадь которого равна 1, на медиане BK взята точка M, причём  MK = ¼ BK.  Прямая AM пересекает сторону BC в точке L.
Найдите площадь треугольника ALC.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .