|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что при a, b, c > 0 имеет место неравенство Дан ромб со стороной a и острым углом α. Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC.
Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных. В ящике 2009 носков – синих и красных. Может ли синих носков быть столько, чтобы вероятность вытащить наудачу два носка одного цвета была равна 0,5? Можно ли расположить в пространстве четыре попарно перпендикулярные прямые? Основание пирамиды – правильный треугольник со стороной 6. Одно из боковых рёбер перпендикулярно плоскости основания и равно 4. Найдите радиус шара, описанного около пирамиды.
У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые. В треугольнике ABC, площадь которого равна 1, на медиане BK
взята точка M, причём MK = ¼ BK. Прямая AM пересекает сторону BC в точке L. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 330]
Высоты остроугольного треугольника ABC, проведённые из вершин B и C, равны 7 и 9, а медиана AM равна 8. Точки P и Q симметричны точке M относительно сторон AC и AB соответственно. Найдите периметр четырёхугольника APMQ.
В остроугольном треугольнике ABC проведены биссектриса AL и медиана CM. Точки K и N являются ортогональными проекциями точек L и M соответственно на сторону AC, причём AK : KC = 4 : 1, AN : NC = 3 : 7. Найдите отношение AL : CM.
В остроугольном треугольнике ABC проведены биссектриса AD и медиана BE. Точки M и N являются ортогональными проекциями точек D и E соответственно на сторону AB, причём AM : MB = 9 : 1, AN : NB = 2 : 3. Найдите отношение AD : BE.
Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.
В треугольнике ABC, площадь которого равна 1, на медиане BK
взята точка M, причём MK = ¼ BK. Прямая AM пересекает сторону BC в точке L.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 330] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|