ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждая сторона выпуклого четырёхугольника разделена на 8 равных частей. Соответствующие точки деления на противоположных сторонах соединены друг с другом, и полученные клетки раскрашены в шахматном порядке. Докажите, что сумма площадей черных клеток равна сумме площадей белых клеток.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 71]      



Задача 53546

Темы:   [ Параллелограмм Вариньона ]
[ Ромбы. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Точки A и B высекают на окружности с центром O дугу величиной 60o. На этой дуге взята точка M. Докажите, что прямая, проходящая через середины отрезков MA и OB, перпендикулярна прямой, проходящей через середины отрезков MB и OA.

Прислать комментарий     Решение


Задача 54993

Темы:   [ Параллелограмм Вариньона ]
[ Отношения площадей ]
Сложность: 4
Классы: 8,9

Дан выпуклый четырёхугольник площади S. Внутри него выбирается точка и отображается симметрично относительно середин его сторон. Получаются четыре вершины нового четырёхугольника. Найдите его площадь.

Прислать комментарий     Решение


Задача 55135

Темы:   [ Параллелограмм Вариньона ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4
Классы: 8,9

Каждая сторона выпуклого четырёхугольника разделена на 8 равных частей. Соответствующие точки деления на противоположных сторонах соединены друг с другом, и полученные клетки раскрашены в шахматном порядке. Докажите, что сумма площадей черных клеток равна сумме площадей белых клеток.

Прислать комментарий     Решение


Задача 108647

Темы:   [ Параллелограмм Вариньона ]
[ Вспомогательная окружность ]
[ Неравенство треугольника (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

M – точка пересечения диагоналей вписанного четырёхугольника, N – точка пересечения его средних линий (отрезков, соединяющих середины противоположных сторон), O – центр описанной окружности. Докажите, что OM ON .
Прислать комментарий     Решение


Задача 109025

Темы:   [ Параллелограмм Вариньона ]
[ Площадь четырехугольника ]
[ Ромбы. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Диагонали четырёхугольника равны по a , а сумма его средних линий b (средние линии соединяют середины противоположных сторон). Вычислить площадь четырёхугольника.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .