ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Стороны правильного шестиугольника раскрашены через одну в красный и синий цвета. Докажите, что сумма расстояний от точки, лежащей внутри шестиугольника, до прямых, содержащих красные стороны, равна сумме расстояний от этой точки до прямых, содержащих синие стороны.

Вниз   Решение


Найдите точку минимума функции y = (x+11)ex-11 .

ВверхВниз   Решение


Докажите тождество  

ВверхВниз   Решение


Из середины M стороны AC треугольника ABC опущены перпендикуляры MD и ME на стороны AB и BC соответственно. Около треугольников ABE и BCD описаны окружности. Докажите, что расстояние между центрами этих окружностей равно AC/4.

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:   (a + b + c + d)² ≤ 4(a² + b² + c² + d²).

ВверхВниз   Решение


В бесконечной последовательности  (xn)  первый член x1 – рациональное число, большее 1, и  xn+1 = xn + 1/[xn]  при всех натуральных n.
Докажите, что в этой последовательности есть целое число.

ВверхВниз   Решение


Окружность проходит через соседние вершины M и N прямоугольника MNPQ. Длина касательной, проведённой из точки Q к окружности, равна 1,  PQ = 2.  Найдите все возможные значения, которые может принимать площадь прямоугольника MNPQ, если диаметр окружности равен .

ВверхВниз   Решение


Автор: Охитин С.

Известно, что четыре синих треугольника на рисунке 1 равновелики.

а) Докажите что три красных четырёхугольника на этом рисунке также равновелики.

б) Найдите площадь одного четырёхугольника, если площадь одного синего треугольника равна 1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 115858

Темы:   [ Замечательное свойство трапеции ]
[ Центр масс ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 4
Классы: 8,9,10,11

Автор: Нилов Ф.

Дан четырёхугольник ABCD. Его противоположные стороны AB и CD пересекаются в точке K. Его диагонали пересекаются в точке L. Известно, что прямая KL проходит через центр тяжести вершин четырёхугольника ABCD. Докажите, что ABCD – трапеция.

Прислать комментарий     Решение

Задача 55137

Темы:   [ Замечательное свойство трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4+
Классы: 8,9

Автор: Охитин С.

Известно, что четыре синих треугольника на рисунке 1 равновелики.

а) Докажите что три красных четырёхугольника на этом рисунке также равновелики.

б) Найдите площадь одного четырёхугольника, если площадь одного синего треугольника равна 1.

Прислать комментарий     Решение


Задача 53775

Темы:   [ Построения одной линейкой ]
[ Замечательное свойство трапеции ]
Сложность: 3+
Классы: 8,9

Даны две параллельные прямые l и l1. С помощью одной линейки разделите пополам данный отрезок AB, лежащий на l.

Прислать комментарий     Решение

Задача 53776

Темы:   [ Построения одной линейкой ]
[ Замечательное свойство трапеции ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Даны две параллельные прямые l и l1. С помощью одной линейки проведите через данную точку M прямую, параллельную прямым l и l1.

Прислать комментарий     Решение

Задача 57273

Темы:   [ Построения одной линейкой ]
[ Замечательное свойство трапеции ]
Сложность: 4-
Классы: 8,9

Даны две параллельные прямые и отрезок, лежащий на одной из них. Удвойте этот отрезок с помощью одной линейки.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .