ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите геометрическое место точек X, лежащих внутри трапеции ABCD ( BC || AD) или на её сторонах, если известно, что S$\scriptstyle \Delta$XAB = S$\scriptstyle \Delta$XCD.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 129]      



Задача 54295

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

В трапеции ABCD точки K и M являются соответственно серединами оснований AB = 5 и CD = 3. Найдите площадь трапеции, если треугольник AMB — прямоугольный, а DK — высота трапеции.

Прислать комментарий     Решение


Задача 55140

Темы:   [ ГМТ - прямая или отрезок ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

Найдите геометрическое место точек X, лежащих внутри трапеции ABCD ( BC || AD) или на её сторонах, если известно, что S$\scriptstyle \Delta$XAB = S$\scriptstyle \Delta$XCD.

Прислать комментарий     Решение


Задача 54296

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

В трапеции ABCD точки K и M являются соответственно серединами оснований AB и CD. Известно, что AM перпендикулярно DK и CK перпендикулярно BM, а угол CKD равен 60o. Найдите площадь трапеции, если её высота равна 1.

Прислать комментарий     Решение


Задача 54323

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

Основание MQ трапеции MNPQ ( MQ || NP, MQ > NP) является диаметром окружности, которая касается прямой MN в точке M и пересекает сторону PQ в точке K, причём PQ = 4$ \sqrt{3}$KQ. Радиус окружности равен R, $ \angle$NQM = 60o. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 78659

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Площадь трапеции ]
[ Рациональные и иррациональные числа ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4+
Классы: 9,10,11

Существует ли четырёхугольник ABCD площади 1 такой, что для любой точки O внутри него площадь хотя бы одного из треугольников OAB, OBC, OCD, DOA иррациональна.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 129]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .