ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике основание равно 12; один из углов при нём равен 120o; сторона против этого угла равна 28. Найдите третью сторону.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 5266]      



Задача 54700

Темы:   [ Теорема косинусов ]
[ Трапеции (прочее) ]
Сложность: 2+
Классы: 8,9

Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.

Прислать комментарий     Решение


Задача 55255

Тема:   [ Теорема косинусов ]
Сложность: 2+
Классы: 8,9

В треугольнике основание равно 12; один из углов при нём равен 120o; сторона против этого угла равна 28. Найдите третью сторону.

Прислать комментарий     Решение


Задача 116515

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Площадь треугольника (прочее) ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 2+
Классы: 10,11

В пространстве заданы три луча: DA, DB и DC, имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°. Сфера пересекает луч DA в точках A1 и A2, луч DB – в точках B1 и B2, луч DC – в точках C1 и C2. Найдите площадь треугольника A2B2C2, если площади треугольников DA1B1, DA1C1, DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

Прислать комментарий     Решение

Задача 53562

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Угол между касательной и хордой ]
Сложность: 3-
Классы: 8,9

Стороны треугольника ABC касаются вписанной окружности в точках K, P и M, причём точка M расположена на стороне BC. Найдите угол KMP, если  ∠A = 2α.

Прислать комментарий     Решение

Задача 53705

Темы:   [ Теорема косинусов ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

В прямоугольном треугольнике ABC с равными катетами AC и BC на стороне AC как на диаметре построена окружность, пересекающая сторону AB в точке M. Найдите расстояние от вершины B до центра этой окружности, если BM = $ \sqrt{2}$.

Прислать комментарий     Решение


Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 5266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .