ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи При каких n многочлен (x + 1)n – xn – 1 делится на: Докажете, что в звезде, изображенной на картинке, не могут быть выполнены одновременно неравенства BC > AB, DE > CD, FG > EF, HK > GH, LA > KL. Найти все прямоугольники, которые можно разрезать на 13 равных квадратов.
В треугольнике ABC отношение стороны BC к стороне AC равно
3, а
|
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 172]
Длины сторон треугольника образуют арифметическую
прогрессию. Докажите, что радиус вписанной окружности
равен трети одной из высот треугольника.
Расстояния от точки X стороны BC треугольника ABC
до прямых AB и AC равны db и dc. Докажите,
что
db/dc = BX . AC/(CX . AB).
Докажите, что в любом остроугольном треугольнике ka+kb+kc = R+r , где ka , kb , kc – перпендикуляры, опущенные из центра описанной окружности на соответствующие стороны; r и R – радиусы вписанной и описанной окружностей.
Точка M лежит на стороне BC треугольника ABC . Известно, что радиус окружности, вписанной в треугольник ABM , в два раза больше радиуса окружности, вписанной в треугольник ACM . Может ли отрезок AM оказаться медианой треугольника ABC ?
В треугольнике ABC отношение стороны BC к стороне AC равно
3, а
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 172]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке