ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $A_2$ – точка касания вписанной окружности треугольника $AB_1C_1$ со стороной $B_1C_1$; аналогично определяются точки $B_2$, $C_2$. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.

Вниз   Решение


В треугольнике ABC отношение стороны BC к стороне AC равно 3, а $ \angle$ACB = $ \alpha$. Из вершины C проведены два луча, делящие угол ACB на три равные части. Найдите отношение отрезков этих лучей, заключённых внутри треугольника ABC.

Вверх   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 184]      



Задача 54812

Темы:   [ Ортоцентр и ортотреугольник ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

Отрезки, соединяющие основания высот остроугольного треугольника, равны 5, 12 и 13. Найдите площадь треугольника.

Прислать комментарий     Решение


Задача 55331

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

В треугольнике ABC отношение стороны BC к стороне AC равно 3, а $ \angle$ACB = $ \alpha$. Из вершины C проведены два луча, делящие угол ACB на три равные части. Найдите отношение отрезков этих лучей, заключённых внутри треугольника ABC.

Прислать комментарий     Решение


Задача 55334

Темы:   [ Ромбы. Признаки и свойства ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

В остроугольном треугольнике ABC точка D выбрана на стороне AB так, что $ \angle$DCA = 45o. Точка D1 симметрична точке D относительно прямой BC, а точка D2 симметрична точке D1 относительно прямой AC и лежит на продолжении отрезка BC за точку C. Найдите площадь треугольника ABC, если BC = $ \sqrt{3}$CD2, AB = 4.

Прислать комментарий     Решение


Задача 55336

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

В треугольнике ABC угол C тупой, а точка D выбрана на продолжении стороны AB за точку B так, что $ \angle$ACD = 135o. Точка D1 симметрична точке D относительно прямой BC, а точка D2 — симметрична точке D1 относительно прямой AC и лежит на прямой BC. Найдите площадь треугольника ABC, если $ \sqrt{3}$BC = CD2 и AC = 6.

Прислать комментарий     Решение


Задача 108491

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В параллелограмме ABCD угол между диагоналями AC и BD равен 30o. Известно отношение AC : BD = 2 : $ \sqrt{3}$. Точка B1 симметрична вершине B относительно прямой AC, а точка C1 симметрична вершине C относительно прямой BD. Найдите отношение площадей треугольника AB1C1 и параллелограмма ABCD.

Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 184]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .