ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точки M, K, N и L - середины сторон AB, BC, CD и DE пятиугольника ABCDE(не обязательно выпуклого), P и Q - середины отрезков MN и KL. Докажите, что отрезок PQ в четыре раза меньше стороны AE и параллелен ей. Решение |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 330]
Дана окружность и точка К внутри неё. Произвольная окружность, равная данной и проходящая через точку К, имеет с данной окружностью общую хорду. Найдите геометрическое место середин этих хорд.
Пусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам.
В треугольнике ABC точки A1, B1, C1 – основания высот из вершин A, B, C, точки CА и CВ – проекции C1 на AC и BC соответственно.
На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что BP = CQ.
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 330] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|