ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны прямая l и точки A и B по разные стороны от неё. С помощью циркуля и линейки постройте такую точку M, что угол между AM и l в два раза меньше угла между BM и l, если известно, что эти углы не имеют общих сторон.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 78]      



Задача 111871

Темы:   [ Окружность, вписанная в угол ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 9,10

Окружность ω с центром O вписана в угол BAC и касается его сторон в точках B и C. Внутри угла BAC выбрана точка Q. На отрезке AQ нашлась такая точка P, что  AQOP.  Прямая OP пересекает описанные окружности ω1 и ω2 треугольников BPQ и CPQ, вторично в точках M и N. Докажите, что  OM = ON.

Прислать комментарий     Решение

Задача 55592

Темы:   [ Окружность, вписанная в угол ]
[ Окружности (построения) ]
Сложность: 4+
Классы: 8,9

Даны прямая l и точки A и B по разные стороны от неё. С помощью циркуля и линейки постройте такую точку M, что угол между AM и l в два раза меньше угла между BM и l, если известно, что эти углы не имеют общих сторон.

Прислать комментарий     Решение


Задача 66683

Темы:   [ Окружность, вписанная в угол ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4+
Классы: 9,10,11

Автор: Креков Д.

В угол с вершиной $C$ вписана окружность $\omega$. Рассматриваются окружности, проходящие через $C$, касающиеся $\omega$ внешним образом и пересекающие стороны угла в точках $A$ и $B$. Докажите, что периметры всех треугольников $ABC$ равны.
Прислать комментарий     Решение


Задача 52547

Темы:   [ Метод ГМТ ]
[ Окружность, вписанная в угол ]
Сложность: 2+
Классы: 8,9

С помощью циркуля и линейки постройте окружность, касающуюся сторон данного угла, причём одной из них — в данной точке.

Прислать комментарий     Решение


Задача 52549

Темы:   [ Метод ГМТ ]
[ Окружность, вписанная в угол ]
Сложность: 3
Классы: 8,9

Даны две параллельные прямые и секущая. С помощью циркуля и линейки постройте окружность, касающуюся всех трёх прямых.

Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .