ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

С помощью циркуля и линейки постройте треугольник по центру его описанной окружности и двум прямым, на которых лежат высоты треугольника.

   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 563]      



Задача 55630

Темы:   [ Пятиугольники ]
[ Осевая и скользящая симметрии ]
Сложность: 4+
Классы: 8,9

Может ли пятиугольник иметь ровно две оси симметрии?

Прислать комментарий     Решение


Задача 108215

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 8,9

В равнобедренном треугольнике ABC ( AB=BC ) точка O – центр описанной окружности. Точка M лежит на отрезке BO , точка M' симметрична M оносительно середины AB . Точка K – точка пересечения M'O и AB . Точка L на стороне BC такова, что CLO = BLM . Докажите, что точки O , K , B , L лежат на одной окружности.
Прислать комментарий     Решение


Задача 55650

Темы:   [ Симметрия помогает решить задачу ]
[ Симметрия и построения ]
[ Построение треугольников по различным элементам ]
Сложность: 5-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по центру его описанной окружности и двум прямым, на которых лежат высоты треугольника.

Прислать комментарий     Решение


Задача 55671

Темы:   [ Симметрия и построения ]
[ Композиции симметрий ]
[ Вписанные и описанные многоугольники ]
Сложность: 5-
Классы: 8,9

Из центра O окружности проведены n прямых (n — нечётно). С помощью циркуля и линейки постройте вписанный в окружность n-угольник, для которого данные прямые являются серединными перепендикулярами к n его сторонам.

Прислать комментарий     Решение


Задача 55672

Темы:   [ Симметрия и построения ]
[ Композиции симметрий ]
Сложность: 5-
Классы: 8,9

На плоскости дано n прямых (n — нечётно), пересекающихся в одной точке. С помощью циркуля и линейки постройте n-угольник, для которого эти прямые являются биссектрисами внешних или внутренних углов.

Прислать комментарий     Решение


Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .