ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны прямая l и точка M. Пусть M1 — точка, симметричная точке M относительно прямой l. При параллельном переносе прямой l в перпендикулярном ей направлении на расстояние h прямая l перешла в прямую l1. Докажите, что образ M2 точки M при симметрии относительно прямой l1 получается из точки M1 параллельным переносом в том же направлении на расстояние 2h.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]      



Задача 55665

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
Сложность: 4
Классы: 8,9

На плоскости даны прямая l и точка M. Пусть M1 — точка, симметричная точке M относительно прямой l. При параллельном переносе прямой l в перпендикулярном ей направлении на расстояние h прямая l перешла в прямую l1. Докажите, что образ M2 точки M при симметрии относительно прямой l1 получается из точки M1 параллельным переносом в том же направлении на расстояние 2h.

Прислать комментарий     Решение


Задача 55668

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
Сложность: 4
Классы: 8,9

Докажите, что композиция параллельного переноса в направлении, перпендикулярном некоторой прямой, и симметрии относительно этой прямой есть осевая симметрия.

Прислать комментарий     Решение


Задача 55678

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4
Классы: 8,9

Существует ли: а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые?

Прислать комментарий     Решение


Задача 57889

Тема:   [ Композиции симметрий ]
Сложность: 4
Классы: 9

Даны три прямые a, b, c. Докажите, что композиция симметрий ScoSboSa является симметрией относительно некоторой прямой тогда и только тогда, когда данные прямые пересекаются в одной точке.
Прислать комментарий     Решение


Задача 57890

Тема:   [ Композиции симметрий ]
Сложность: 4
Классы: 9

Даны три прямые a, b, c. Пусть T = SaoSboSc. Докажите, что ToT — параллельный перенос (или тождественное отображение).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .