|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольной пирамиде SABC две равные боковые грани ASB и CSB перпендикулярны плоскости основания, а грань ASC наклонена к плоскости основания под углом β . Найдите радиус шара описанного около пирамиды, если радиус окружности, описанной около основания, равен r и Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 1567]
Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.
Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.
Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой.
Докажите, что при повороте окружность переходит в окружность.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 1567] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|