ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Параллелограммы
>>
Признаки и свойства параллелограмма
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах параллелограмма построены квадраты по ту же сторону от его сторон, по которую расположен сам параллелограмм. Докажите, что центры этих квадратов сами образуют квадрат. Решение |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 402]
В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D.
Дан параллелограмм ABCD с тупым углом A. Точка H – основание перпендикуляра, опущенного из точки A на BC. Продолжение медианы CM треугольника ABC пересекает описанную около него окружность в точке K. Докажите, что точки K, H, C и D лежат на одной окружности.
На сторонах параллелограмма построены квадраты по ту же сторону от его сторон, по которую расположен сам параллелограмм. Докажите, что центры этих квадратов сами образуют квадрат.
В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 402] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|